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ABSTRACT

Let F' be a field with 2 = 0 and p =< ay, ... , a, > an n-fold anisotropic
bilinear Pfister form over F' with function field F(¢). In this paper we
compute ker[I% /I — Iﬁ(¢)/Igz“(;)] where Irp C W(F') is the maximal
ideal in the Witt ring W (F') of F. We use this computation to prove a
n-linkage property of the subfields F?(ay,... ,a,).

0. INTRODUCTION

In this paper F' will denote throughout a field with 2 = 0. Let
O = B, , % be the F-algebra of differential forms over F' and let
d: Q. — QU (n > 0) be the differential operator (see [Cal, [Kal,
[A-Ba 1]). In [Ka] (see also [Mi]) a homomorphism ¢ : Q% — Q% /dQ% !
is defined on generators as follows

p(x%/\/\%) = (x2—x)%/\---/\% mod d% .
T Tn T Tp

(if n = 0 we have the usual Artin-Schreier operator p(z) = z? — ).

Let vp(n) = ker(p) and H"™(F) = coker(p). In [Ka] it is shown
that vp(n) is additively generated by the pure logarithmic differentials
% Ao N3 (g; € F* = F\{0}) and that there exists a natural
isomorphism !

(1) o vp(n) o~ Ty = In/Ix!

given on generators by a(%/\- : ~/\df—:) =< T,... , T, > mod [t
Here Ir denotes the maximal ideal of even dimensional forms in the
Witt ring W (F') of non-singular symmetric bilinear forms over F' and
<L r1,...,x, > is the n-fold Pfister form < 1,21 > ®---® < 1,x, >
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(see [Sal, [A-Ba 1] for basic definitions). If L/F is a field extension, let
vr/r(n) denote ker(vp(n) — vi(n)) and TZ/F = ker(ITy — 1;). Thus
« induces an isomorphism o : vz, p(n) ~ I, /P

The purpose of this note is to compute vz ,p(n) when L is the function
field of an anisotropic bilinear Pfister form and to relate this compu-
tation to some linking property of subfields of F'. The computation of
H"YL/F) = ker(H"™(F) — H""'(L)) is much more involved and
has been done in [A-Ba 2|. For any bilinear form ¢ over F' we will
denote by F(p) the function field of the quadric {p(z,z) = 0}.

In Section 1 and 2 we compute vp(,r(n) and TTI;(cp)/F where
Y =<K ay,...,a, >. In section 3 we extend these computations to
Ve F(m), 77;(@ s for arbitrary m > 1. We will use the following
notions and notations taken from [Ca]. A 2-basis of F is a subset
{a1,as,...} C F such that the elements {a° = [[;a]" | ¢ = (&)}
(here € = (g;), runs over all sequences with ¢, = 0 or 1, and with 0
almost everywhere), form a basis of F' over F? as a vector space. This

is equivalent with the fact that the forms Cff—l Ao AN o<
i1

are a F-basis of Q% for all n > 0. Fixing such a 2-basis, let [Q}Hm =
D i F2%%0 Ao A B3 Then the space 7n =ker(d : Q% — Q)
n all a

in

has the direct sum decomposition Z% = [Q%]# @ dQ% " and we get a
homomorphism C' : Z} — Q} given by

da; da; da; da;
2 11 in _ . . 1AL in
(J( E i, ” Ao A ” +dn> = E Ciyovin A /\—ai

. . 7 7 . . (2
1< <ip " 1< <tn !

which obviously induces an isomorphism C : Z/dQn " ~ Qr. Al
though the decomposition of Z} depends on the choice of the 2-basis,
the map C does not. We will call C' the Cartier operator. It is easy
to see that vp(n) is characterized by: w € vp(n) if and only if dw = 0
and C(w) = w.

1. vpp(n) FOR L = F(<K ay,... ,a, >>)

Let ¢ =< ai,...,a, > be an anisotropic n-fold bilinear Pfister
form over F. This means that {aj,as,...,a,} are part of a 2-basis
{ai,aq,...} of F. Let F?*(ay,...,a,) be the subfield of F gener-
ated by ai,...,a, over F? and let F?(ay,...,a,)" the additive sub-
group of pure elements @_, F?a®, ¢ = (e1,... ,,) € {0,1}". Thus
F?*(ay,...,a,) = Dg(p) is the set of elements of F' represented by
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¢ (including 0) and F*(ay,...,a,)" = Dp(p)" are the elements rep-
resented by the pure part ¢’ of p. Let L = F(p) and set Qf . =
ker(Q% — Q7F). Then we have

vee(n) = Q1 O ve(n).
In [A-Ba 2] we have computed 7', for any m > 0. The result is

1.1. Proposition.

0 , ifm<n
?/F: d da,,
Q}?_”/\ﬂ/\---/\i , ifm>n.
aq Ay,
1.2. Corollary.
0 , ifm<n
vi/p(m) = da da
QA — A A ifm > n.
F ay a, mVF(m> ) me_n

For the sake of completeness we will give a sketch of the proof of
1.1 at the end of this section. The rest of this section is devoted to
compute vz /p(n) = F% A A% yp(n).

1.3. Lemma. For any a € F the following assertions are equivalent
d dan
Loagt A AN € vp(n).

2. p(a) =a*—a € F*(ay,... ,a,).

Proof. Assume (1). Choose a 2-basis of F' containing ay, ... ,a,, say
{ai,... ,an,... ,ay} (we can assume without restriction that this basis
is finite). Then a = Y _c?a®, where € = (g1,... ,ey) runs over {0, 1}

and a® = af' - --ay. It follows

N
da = Z D;(a)da;
i=1

with D;(a) = >°_c2aj' -+ - a; - - - a}y where € runs over all &’s with e; = 1.
Since a%l/\- : -/\‘ff—: € vr(n) C ker(d), we obtain d(a) Ada; A- - -Ada,, =
0, and this implies d(a) = ¢1day + - - - + ¢pda, with some ¢; € F. Hence
D;(a) = 0 for all 7 > n and we conclude ¢, = 0 whenever ¢; = 1 for
some 7 > n. Thus we have

a= Z ca® € F*(ay,... ,ap)
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and
daq da,, 5 day da,
a— N A== e A A
aq Qp, B ay a, "

From our assumption (1) and the definition of the Cartier operator
mentioned in the introduction, we obtain

a%/\ /\% :C(a@/\ A%)

aq Qp, ay Qp,
ZC( dCLl A dan )
= o = — .
a, ¢
For any ¢ # 0, the form c¢? ?‘21 A A aiﬁgn is exact and hence

C(Eda .. A a‘ffzn) — 0. Thus we obtain

‘Eaiel
LI %:(3(6[“1/\ dﬁ)

aq Qp, aq Qp,
da da
aq Qp,
i.e. a = cg. Therefore a = a® +3__,;cZa®, and this is precisely (2).
Conversely, assuming a = a® + 3 _,c2a®, e = (e1,... ,,) € {0, 1},
we obtain
day dan da1 dan day da,
a— N - — = +Z€151 A 1—en
ai G, ai G, 40 aq a,

and hence C’(a“i%“l1 ARERW)N dj—ﬂ") = a‘f% ARRRWA CZL_: and this implies (1). m
Putting 1.2 and 1.3 together we obtain

1.4. Theorem. Let L = F(<K a1,... ,a,>). Then

d d
vpp(n) = {a% ARRRWA ﬁ|a € F with p(a) € F*(ay, . .. ,an)’} .

1 an

Proof of Proposition (1.1). The function field L = F(y), where
Y =<K ay,...,a, >, can be described as follows: for any ¢ € {0,1}",
different from (0, ... ,0), let X, be a variable and set K = F(X.) for
the field generated by all this variables over F. Then L = K(/T),
where T' = >°_,,a°XZ (T is the pure part of < ay,...,a, >). We
proceed now in three steps:

1. QF =0 This is clear choosing a 2-basis B of F' and enlarging

it to a 2-basis BU {X.,e # 0} of K.



LINKAGE OF FIELDS IN CHARACTERISTIC 2 5

2. If E = F(Va), a € F\F?, then O, = Q™" Ada. Since a ¢ F?,
we can choose a 2-basis of F' containing a, say B = {a,¢; i € I}.
Then {\/a,¢; i € I} is a 2-basis of E. If w € Qf 1, set w =
<Zi1<-~~<im,1 ail...imfldcil/\- . '/\dcim—l)Ada+Zi1<m<im ail...imdcil/\
-++Ade;,,. Thenin QF weget > . _ i aj.i,dcy A---Ndc;, =
0 and hence a;,..;, = 0 for all iy <--- <1,. This proves the

claim. p p

3. O = Q?’_"/\aill/\---/\%, and if m < n, Q) = 0.
We just consider the case m > n. We choose a 2-basis B =
{ai,...  an,...} of F' and take w € QF, .. From (2) we get

w=uNdT,u € Q%’l, where dT' = kida1+- - -+ kyday,. ki,... , k,
being certain quadratic polynomials over F'. Inserting da; =
ki (kodag+- - -+kyday,)+ky tdT into u, we see that we may assume
u free from terms containing da; in its basis expansion with re-
spect to the 2-basis BU{X., ¢ # 0} of K. Write w = wo+w; Aday
with forms wy, w; free from forms containing da;. Then in Q7
we have wy +wy Ada; = u A kyday +u A (kedag + - - - + kpday,), i.e.
(w1 + kyu) Aday = wo +u A (kodag + - - - + kyday,). Since the form
on the right of this equation does not contain da; in the 2-basis
expansion, we obtain w; = kju and therefore kyw = wy A dT.
Everything in this equation is defined over F[X., & # 0], so
that a simple specialization of the variables proves that da; di-
vides w in Q. Thus w is divisible by day, ... ,da, and hence by
day A\ ... A da,. This proves the claim.

2. IT)p FOR L =F(<K ai,... ,a, >)

Using jhe isomorphism o : vp/p(n) = TZ/F and 1.4 we can now
describe [Z/F. But in order to apply « to a“f% ARERVA Cz’—n" € vyr(n) we
must express this form in terms of pure logarithmic differentials.

2.1. Examples. 1. Ifn=1,i.c. a=a’+ c*ay (see (1.4)), then

da;  a’*ay day a*ay  da;  d(c*a? + a*ay)
aq— = — R

aq aa; a;  c2a? +a%a; a; c2a? + a?ay

and hence a(a%) =< Paf + a®ay; > mod I.
2. If n =2, ie. a=a*+ clay + clay + cEajay = d + ajad”’, with
a = a®+ ciay, o’ = & + clay € F?*(az), a simple computation
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shows that d(aay) A day = a’day A day, and hence

Jdon  day - adlaa) day _ a’day | d(aa)
a Qo a  aay as a as aaq
_ d(aad’) A d(aay)
- CLQCL, aaq ’

Thus oa d‘“ A d‘”) =< asd,aa; > mod I

Let us now Consider the general situation. According to (1.3) we have
a=a*+3_ cta = d +aa” with ’,a” € F*(ay, ... ,a,). We claim
that there exist elements x; € F*(ay,... ,a,)* with a% AREEWAN CZM =
C%l AR dl,i The cases n = 1,2 are clear because of (2.1). We have

da da a® da da, d(aa
AL A .. _”:__ZA.../\_"/\M.
aq an, a as an, aa;
Notice that the form % d‘” A--- A% s defined over F2(as, ... ,a,). Set

a = a*/a’. We show that p(a ) € F (ag, ... ,a,), so the claim follows
by induction. In fact, we have p(a) = a* + a = a*(a* + d’)/a?, and

since
d=a 4—202 ay ---alr,
n#0
n € {0,131, it follows p(a) = 3, ., (ﬂ)za;” cea™ e Fag, ... ,a,).
Froma‘f%/\-~-/\%:‘iill/\-~-/\d;‘—:Weobtaln&(a%/\---/\ai:):

L T1,.. 2, > mod 5T and this shows TZ/F C{<ay,. ..o, >

mod I | zy,... , 2, € F*(ay,... ,a,)*}. Tt is easy to check that the
other inclusion also holds. Thus we have shown.

2.2. Theorem. If L = F(<K ay,... ,a, >), then

TZ/F: {<<x1,... Tn S |21, T € F3(ay, ... ,an)*}.

Using the fact that Tz /F 18 & group, we obtain

2.3. Corollary. Foranyxy,... ,Tn, Y1,... ,Yn € F2(a1,... ,a,)*, there
exist z1,. .. , 2, € F?(ay,... ,a,)* such that

LTy Ty D>+ KLYy oo Yy D= 2,00, 2 > mod]ﬁ“.
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One can interpret this result as a sort of n-linkage property of the
subfields F?(ay, ... ,a,) relative to the field F' in the sense of the fol-
lowing definition. Let ¥ C F' be a subfield. FE is called n-linked relative
to F if for all z1,... 2, y1,... ,yn € E*, there exist 2z1,... ,z, € E*
with < zq,..., 2, >+ < y1,... ,Yp >=< 21,...,2, > mod Ilfi“
in W(F).

3. vpyr(m) FOR L = F(K a1, ... ,a, >)

The aim of this section is to extend the results of section 2 to arbi-
trary m, i.e. we will compute vy p(m) for m > 1. Since v p(m) =
Q7 pNvp(m), we conclude vy p(m) = 0 if m < n (see (1.1)). Thus we
assume m > n, and hence vy /p(m) = Q™" A % A A ‘{:‘—n” Nvp(m).
In order to characterize the forms w € Q™" with w A ‘% ARERWAN CZL: €
vr(m) we generalize the operator p(a) = a® — a as follows (see [Ka],
[A-Ba 2|). Let {ai,...,an,... ,ayn} be a 2-basis of F' which we assume
without restriction to be finite. Then any form n € Q%, (¢ > 1) can be
written in a unique way as

da; dai
n= Z Cil...l'q—:l/\"'/\ L,

a; a;
1< <ig ¢ tq

We define p : Q%L — Q% by

da; da;
p(fr]) — Z @(Cilmz‘q) LA N
i< i iy Q;,
1< <2q
= -y
da; da;
where nl2 = Yy nglmz‘q?ll Ao N

This definition obviously depends on the choice of the 2-basis {a;},
but if one changes the 2-basis, the new @ operator values differs from
the former values by exact forms, i.e. p(n) mod dQ?I1 is independent
of the 2-basis. With this notation we have

3.1. Lemma. Let m > n and w € Qp". Fiz a 2-basis {ay, ... ,a,,
.yan} of F. Then the following assertions are equivalent

LowAd . A e yp(m).
2. p(w) € Z#o a® [Q?_”} &y O3 QR Ada,

(where a® = a'---a5" and [pr]m denotes the group of all i,
nenNt).
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If m = n, we recover (1.3). Since the proof of (3.1) follows the same
pattern as the proof of (1.3), we will skip some details.

Proof of (3.1) Assume (2), i.e. we have

w=w? + ZaaA?] +dB + ZE’ A da;
e#0 i=1
with A; € Q™" B,E,... ,E, € QF "' Tt follows d(w A n) = 0,
where n = da% A A ‘?—n”. Applying the Cartier Operator to w A n we
get

C(wAn) =Cw? An)=wAn,

because a A Amn, dB An are exact forms. This implies wAn € ve(m).
da;
Let us now assume (1). Set w =3, _ _;, ¢ daiy poo g Limen

In what follows all computations will be modulo < dal, ooy day, >7.nfet
k > n be the maximal index with w = Ry + ax R, Ry, R, differential

d .
forms generated by aa”:ll R da—N over F%(ay, ... ,a,_1). Let us write

Ry = My + My A d“’“ , R = M, + Mz A d“k’“ with forms My, ..., M3 not
containing the dlfferentlal dai and with coeflicients in Fz(al, cee sy Qp—1).
It follows

day, d
dw = dMO + adeg + dMl N — —f- ak(dMg + Mg) VAN ﬁ
ay

and since d(w A n) = 0, we get d(MO A n) =0, dMxAn)=0,dM; A
‘ii: An) =0 and (dMz+ M) A %’“ An = 0. Because of the choice made
above, we obtain d(My) = 0, dMy = 0, dM1 =0, dM3 + My = 0. Thus
w = My + M; A % + d(axMs). Let w' = My + M; A da:. It follows

dan d
d(w' An) = dw' /\ 77 = 0. Moreover w’ is generated by ==t ... <Y
over F%(ay, ..., ap_1).
Repeating the above procedure with w’ we finally arrive at a decom-

position

w = Wy + dM
with wy generated by daa"jll,... ,CZ“—NN over F%(ay,... ,a,), ie. w =
Z# cu%+dM, with ¢, € F?(ay, ... ,a,), and yu running over all m—n-
tuples p = (i1, . .. ,im,n) of integers with n+1 < iy < -+ < ipp < N
and where a, = aZl C Qs day, = dagg N Ndag,, .
Let ¢, = Y__c),.a%, where € = (81, cooyen) €40,1}" af = ait - asr.

Then

w = Za‘f <Z Ci@%) +dM.
€ I H
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Set A, = Zu cu,acff—:. Thus we have

w= Ay + @A + dM.
e#0
Using the fact that at AP A n, dM An € dQE"" we conclude

C(wAn):C(AE]An) = Ag A1,

ie. wAn=AgAn. It follows w = Ag + H with H €< %1,... ,Cfla—" >
Therefore A
w=w? + ZaaA?] +dM + H'
e#0
with H' € >0 Qp " 1A da—'? This proves the lemma. [

3.2. Corollary. Let L = F(<K ay,... ,a,>). Then
L Ifm<n, vpp(m)=0.
2. If m > n, then

viyp(m) ={wA—AN---N— | weQp™,

aq Qn
with p(w) € Z a® [QF "] [y dQp— !+ Z Qrb A day}.
e#£0 i=1
Using this decomposition of vz, p(m) and lemma (2.5) in [Kal, we
can show
3.3. Corollary. Let L = F(<K ay,... ,a,>). Then
1. If m <n, Tan/F =0
2. If m > n,
TZL/F = {z/; L Tryeo Ty > YETR™ 21, 2, € F(ay, . .. ,an)*}

We will omit the details of the proof.
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